Unveiling IoT Security in Reality: A Firmware-Centric Journey
Sep 24, 24240ยท,,,,,ยท
1 min read
Nicolas Nino
Ruibo Lu
Wei Zhou
Kyu Hyung Lee
Ziming Zhao
Le Guan

Abstract
To study the security properties of the Internet of Things (IoT), firmware analysis is crucial. In the past, many works have been focused on analyzing Linux-based firmware. Less known is the security landscape of MCU-based IoT devices, an essential portion of the IoT ecosystem. Existing works on MCU firmware analysis either leverage the companion mobile apps to infer the security properties of the firmware (thus unable to collect low-level properties) or rely on small-scale firmware datasets collected in ad-hoc ways (thus cannot be generalized). To fill this gap, we create a large dataset of MCU firmware for real IoT devices. Our approach statically analyzes how MCU firmware is distributed and then captures the firmware. To reliably recognize the firmware, we develop a firmware signature database, which can match the footprints left in the firmware compilation and packing process. In total, we obtained 8,432 confirmed firmware images (3,692 unique) covering at least 11 chip vendors across 7 known architectures and 2 proprietary architectures. We also conducted a series of static analyses to assess the security properties of this dataset. The result reveals three disconcerting facts: 1) the lack of firmware protection, 2) the existence of N-day vulnerabilities, and 3) the rare adoption of security mitigation.
Type
Publication
In Usenix Security 24
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.
Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.